These pyramid pairs are refinements of the triangle pair Oak /[[ | Maple ]] .
In Liana /Ivy the axis valency is added. In TwistedLiana /Lonicera the axis gravity is added.
🌊 Liana and TwistedLiana are refinements of Oak .
Their sums along axis depth are Ash and TwistedAsh .
💧 Ivy and Lonicera are refinements of [[ | Maple ]] .
Their sums along axis depth are Aspen and Alder .
Liana and TwistedLiana are essentially the same pyramid:
Liana
(
a
,
x
,
y
)
=
TwistedLiana
(
a
,
a
−
x
,
a
−
y
)
{\displaystyle {\text{Liana}}(a,x,y)={\text{TwistedLiana}}(a,a-x,a-y)}
So
Liana
(
a
,
x
,
y
)
{\displaystyle {\text{Liana}}(a,x,y)}
is the cardinality of two sets of
a
{\displaystyle a}
-ary seals:
Those with depth
x
{\displaystyle x}
and valency
y
{\displaystyle y}
,
and those with depth
a
−
x
{\displaystyle a-x}
and gravity
a
−
y
{\displaystyle a-y}
.
Pyramids Liana and Ivy
Only positive coordinates are shown. The column with d = v = 0 is hidden. Liana(a , 0, 0) = 1. Ivy(0, 0, 0) = 1.
equivalents counting houses
(a , d , v ) ↦ seals
Liana(a , d , v )Ivy(a , d , v )
is the number of seals with
arity adicity
a , depth d and valency v .
🌊 pyramid Liana
overview
Indices in the image go from 1 to 7.
Liana is always 1 where depth and valency are 0. But this column is not shown in the images.
The sum along valency is triangle Oak .
The sum along depth is triangle Ash .
The layer sums (and row sums of these triangles) are sequence Daisy .
fixed arity (depth × valency matrices)
The row sums are rows of triangle Oak . The column sums are rows of triangle Ash . The total sums are entries of Daisy .
arity 0
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
arity 1
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
3
4
5
6
7
Σ
1 1
2
arity 2
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2 1
3
2
1
1
3
4
5
6
7
Σ
1 2 2
5
arity 3
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
3 3 1
7
2
3 4
7
3
1
1
4
5
6
7
Σ
1 3 6 6
16
arity 4
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
4 6 4 1
15
2
6 16 13
35
3
4 11
15
4
1
1
5
6
7
Σ
1 4 12 24 26
67
arity 5
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
5 10 10 5 1
31
2
10 40 65 40
155
3
10 55 90
155
4
5 26
31
5
1
1
6
7
Σ
1 5 20 60 130 158
374
arity 6
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
6 15 20 15 6 1
63
2
15 80 195 240 121
651
3
20 165 540 670
1395
4
15 156 480
651
5
6 57
63
6
1
1
7
Σ
1 6 30 120 390 948 1330
2825
arity 7
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
7 21 35 35 21 7 1
127
2
21 140 455 840 847 364
2667
3
35 385 1890 4690 4811
11811
4
35 546 3360 7870
11811
5
21 399 2247
2667
6
7 120
127
7
1
1
Σ
1 7 42 210 910 3318 9310 15414
29212
fixed depth (arity × valency matrices)
The row sums are columns of triangle Oak .
depth 0
v
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
depth 1
v
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
2 1
3
3
3 3 1
7
4
4 6 4 1
15
5
5 10 10 5 1
31
6
6 15 20 15 6 1
63
7
7 21 35 35 21 7 1
127
depth 2
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1
1
3
3 4
7
4
6 16 13
35
5
10 40 65 40
155
6
15 80 195 240 121
651
7
21 140 455 840 847 364
2667
depth 3
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1
1
4
4 11
15
5
10 55 90
155
6
20 165 540 670
1395
7
35 385 1890 4690 4811
11811
depth 4
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1
1
5
5 26
31
6
15 156 480
651
7
35 546 3360 7870
11811
depth 5
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1
1
6
6 57
63
7
21 399 2247
2667
depth 6
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1
1
7
7 120
127
depth 7
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Ash
v
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1 1
2
2
1 2 2
5
3
1 3 6 6
16
4
1 4 12 24 26
67
5
1 5 20 60 130 158
374
6
1 6 30 120 390 948 1330
2825
7
1 7 42 210 910 3318 9310 15414
29212
fixed valency (arity × depth matrices)
The row sums are columns of triangle Ash .
valency 0
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
valency 1
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
valency 2
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1 1
2
3
3 3
6
4
6 6
12
5
10 10
20
6
15 15
30
7
21 21
42
valency 3
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1 4 1
6
4
4 16 4
24
5
10 40 10
60
6
20 80 20
120
7
35 140 35
210
valency 4
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1 13 11 1
26
5
5 65 55 5
130
6
15 195 165 15
390
7
35 455 385 35
910
valency 5
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1 40 90 26 1
158
6
6 240 540 156 6
948
7
21 840 1890 546 21
3318
valency 6
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1 121 670 480 57 1
1330
7
7 847 4690 3360 399 7
9310
valency 7
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1 364 4811 7870 2247 120 1
15414
sum: triangle Oak
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1 1
2
2
1 3 1
5
3
1 7 7 1
16
4
1 15 35 15 1
67
5
1 31 155 155 31 1
374
6
1 63 651 1395 651 63 1
2825
7
1 127 2667 11811 11811 2667 127 1
29212
💧 pyramid Ivy
overview
Indices in the image go from 1 to 7.
The entry Ivy (0, 0, 0) = 1 is not shown in the images.
The sum along valency is triangle [[ |Maple ]] .
The sum along depth is triangle Aspen .
The layer sums (and row sums of these triangles) are sequence Dahlia .
The pyramid sides in the back (depth = 1) and front (valency − depth = 0) are Pascal's triangle .
fixed adicity (depth × valency matrices)
The row sums are rows of triangle [[ |Maple ]]. The column sums are rows of triangle Aspen . The total sums are entries of Dahlia .
adicity 0
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 1
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 2
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1 1
2
2
1
1
3
4
5
6
7
Σ
1 2
3
adicity 3
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1 2 1
4
2
2 4
6
3
1
1
4
5
6
7
Σ
1 4 6
11
adicity 4
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1 3 3 1
8
2
3 12 13
28
3
3 11
14
4
1
1
5
6
7
Σ
1 6 18 26
51
adicity 5
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1 4 6 4 1
16
2
4 24 52 40
120
3
6 44 90
140
4
4 26
30
5
1
1
6
7
Σ
1 8 36 104 158
307
adicity 6
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1 5 10 10 5 1
32
2
5 40 130 200 121
496
3
10 110 450 670
1240
4
10 130 480
620
5
5 57
62
6
1
1
7
Σ
1 10 60 260 790 1330
2451
adicity 7
v
d
0 1 2 3 4 5 6 7 Σ
0
1
1 6 15 20 15 6 1
64
2
6 60 260 600 726 364
2016
3
15 220 1350 4020 4811
10416
4
20 390 2880 7870
11160
5
15 342 2247
2604
6
6 120
126
7
1
1
Σ
1 12 90 520 2370 7980 15414
26387
fixed depth (adicity × valency matrices)
The row sums are columns of triangle [[ |Maple ]].
depth 0
v
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
depth 1
v
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
1 1
2
3
1 2 1
4
4
1 3 3 1
8
5
1 4 6 4 1
16
6
1 5 10 10 5 1
32
7
1 6 15 20 15 6 1
64
depth 2
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1
1
3
2 4
6
4
3 12 13
28
5
4 24 52 40
120
6
5 40 130 200 121
496
7
6 60 260 600 726 364
2016
depth 3
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1
1
4
3 11
14
5
6 44 90
140
6
10 110 450 670
1240
7
15 220 1350 4020 4811
10416
depth 4
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1
1
5
4 26
30
6
10 130 480
620
7
20 390 2880 7870
11160
depth 5
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1
1
6
5 57
62
7
15 342 2247
2604
depth 6
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1
1
7
6 120
126
depth 7
v
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Aspen
v
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
1 2
3
3
1 4 6
11
4
1 6 18 26
51
5
1 8 36 104 158
307
6
1 10 60 260 790 1330
2451
7
1 12 90 520 2370 7980 15414
26387
fixed valency (adicity × depth matrices)
The row sums are columns of triangle Aspen .
valency 0
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
valency 1
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
valency 2
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1 1
2
3
2 2
4
4
3 3
6
5
4 4
8
6
5 5
10
7
6 6
12
valency 3
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1 4 1
6
4
3 12 3
18
5
6 24 6
36
6
10 40 10
60
7
15 60 15
90
valency 4
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1 13 11 1
26
5
4 52 44 4
104
6
10 130 110 10
260
7
20 260 220 20
520
valency 5
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1 40 90 26 1
158
6
5 200 450 130 5
790
7
15 600 1350 390 15
2370
valency 6
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1 121 670 480 57 1
1330
7
6 726 4020 2880 342 6
7980
valency 7
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1 364 4811 7870 2247 120 1
15414
sum: triangle Maple
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
2 1
3
3
4 6 1
11
4
8 28 14 1
51
5
16 120 140 30 1
307
6
32 496 1240 620 62 1
2451
7
64 2016 10416 11160 2604 126 1
26387
Pyramids TwistedLiana and Lonicera
🌊 TwistedLiana
💧 Lonicera
equivalents counting houses
(a , d , g ) ↦ seals
TwistedLiana(a , d , g )Lonicera(a , d , g )
is the number of seals with
arity adicity
a , depth d and gravity g .
🌊 pyramid TwistedLiana
overview
The sum along gravity is triangle Oak . The sum along depth is TwistedAsh .
The layer sums (and row sums of these triangles) are sequence Daisy .
fixed arity (depth × gravity matrices)
The row sums are rows of Oak . The column sums are rows of TwistedAsh . The total sums are entries of Daisy .
arity 0
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
arity 1
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
3
4
5
6
7
Σ
1 1
2
arity 2
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1 2
3
2
1
1
3
4
5
6
7
Σ
2 2 1
5
arity 3
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
4 3
7
2
1 3 3
7
3
1
1
4
5
6
7
Σ
6 6 3 1
16
arity 4
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
11 4
15
2
13 16 6
35
3
1 4 6 4
15
4
1
1
5
6
7
Σ
26 24 12 4 1
67
arity 5
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
26 5
31
2
90 55 10
155
3
40 65 40 10
155
4
1 5 10 10 5
31
5
1
1
6
7
Σ
158 130 60 20 5 1
374
arity 6
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
57 6
63
2
480 156 15
651
3
670 540 165 20
1395
4
121 240 195 80 15
651
5
1 6 15 20 15 6
63
6
1
1
7
Σ
1330 948 390 120 30 6 1
2825
arity 7
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
120 7
127
2
2247 399 21
2667
3
7870 3360 546 35
11811
4
4811 4690 1890 385 35
11811
5
364 847 840 455 140 21
2667
6
1 7 21 35 35 21 7
127
7
1
1
Σ
15414 9310 3318 910 210 42 7 1
29212
fixed depth (arity × gravity matrices)
The row sums are columns of Oak .
depth 0
g
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
1
1
3
1
1
4
1
1
5
1
1
6
1
1
7
1
1
depth 1
The left column shows the Euler numbers (A000295 ). Their positive terms are summations of 1, 3, 7, 15, 31...
g
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
1 2
3
3
4 3
7
4
11 4
15
5
26 5
31
6
57 6
63
7
120 7
127
depth 2
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1
1
3
1 3 3
7
4
13 16 6
35
5
90 55 10
155
6
480 156 15
651
7
2247 399 21
2667
depth 3
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1
1
4
1 4 6 4
15
5
40 65 40 10
155
6
670 540 165 20
1395
7
7870 3360 546 35
11811
depth 4
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1
1
5
1 5 10 10 5
31
6
121 240 195 80 15
651
7
4811 4690 1890 385 35
11811
depth 5
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1
1
6
1 6 15 20 15 6
63
7
364 847 840 455 140 21
2667
depth 6
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1
1
7
1 7 21 35 35 21 7
127
depth 7
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle TwistedAsh
g
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1 1
2
2
2 2 1
5
3
6 6 3 1
16
4
26 24 12 4 1
67
5
158 130 60 20 5 1
374
6
1330 948 390 120 30 6 1
2825
7
15414 9310 3318 910 210 42 7 1
29212
fixed gravity (arity × depth matrices)
The row sums are columns of TwistedAsh .
gravity 0
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
1 1
2
3
1 4 1
6
4
1 11 13 1
26
5
1 26 90 40 1
158
6
1 57 480 670 121 1
1330
7
1 120 2247 7870 4811 364 1
15414
gravity 1
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
2
2
3
3 3
6
4
4 16 4
24
5
5 55 65 5
130
6
6 156 540 240 6
948
7
7 399 3360 4690 847 7
9310
gravity 2
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1
1
3
3
3
4
6 6
12
5
10 40 10
60
6
15 165 195 15
390
7
21 546 1890 840 21
3318
gravity 3
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1
1
4
4
4
5
10 10
20
6
20 80 20
120
7
35 385 455 35
910
gravity 4
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1
1
5
5
5
6
15 15
30
7
35 140 35
210
gravity 5
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1
1
6
6
6
7
21 21
42
gravity 6
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1
1
7
7
7
gravity 7
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Oak
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1 1
2
2
1 3 1
5
3
1 7 7 1
16
4
1 15 35 15 1
67
5
1 31 155 155 31 1
374
6
1 63 651 1395 651 63 1
2825
7
1 127 2667 11811 11811 2667 127 1
29212
💧 pyramid Lonicera
overview
The sum along gravity is triangle [[ |Maple ]] . The sum along depth is triangle Alder .
The layer sums (and row sums of these triangles) are sequence Dahlia .
fixed adicity (depth × gravity matrices)
The row sums are rows of [[ |Maple ]]. The column sums are rows of Alder . The total sums are entries of Dahlia .
adicity 0
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 1
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
Σ
1
1
adicity 2
g
d
0 1 2 3 4 5 6 7 Σ
0
1
1 1
2
2
1
1
3
4
5
6
7
Σ
1 1 1
3
adicity 3
g
d
0 1 2 3 4 5 6 7 Σ
0
1
3 1
4
2
1 3 2
6
3
1
1
4
5
6
7
Σ
4 4 2 1
11
adicity 4
g
d
0 1 2 3 4 5 6 7 Σ
0
1
7 1
8
2
12 13 3
28
3
1 4 6 3
14
4
1
1
5
6
7
Σ
20 18 9 3 1
51
adicity 5
g
d
0 1 2 3 4 5 6 7 Σ
0
1
15 1
16
2
77 39 4
120
3
39 61 34 6
140
4
1 5 10 10 4
30
5
1
1
6
7
Σ
132 106 48 16 4 1
307
adicity 6
g
d
0 1 2 3 4 5 6 7 Σ
0
1
31 1
32
2
390 101 5
496
3
630 475 125 10
1240
4
120 235 185 70 10
620
5
1 6 15 20 15 5
62
6
1
1
7
Σ
1172 818 330 100 25 5 1
2451
adicity 7
g
d
0 1 2 3 4 5 6 7 Σ
0
1
63 1
64
2
1767 243 6
2016
3
7200 2820 381 15
10416
4
4690 4450 1695 305 20
11160
5
363 841 825 435 125 15
2604
6
1 7 21 35 35 21 6
126
7
1
1
Σ
14084 8362 2928 790 180 36 6 1
26387
fixed depth (adicity × gravity matrices)
The row sums are columns of [[ |Maple ]].
depth 0
g
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
3
4
5
6
7
depth 1
g
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
1 1
2
3
3 1
4
4
7 1
8
5
15 1
16
6
31 1
32
7
63 1
64
depth 2
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1
1
3
1 3 2
6
4
12 13 3
28
5
77 39 4
120
6
390 101 5
496
7
1767 243 6
2016
depth 3
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1
1
4
1 4 6 3
14
5
39 61 34 6
140
6
630 475 125 10
1240
7
7200 2820 381 15
10416
depth 4
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1
1
5
1 5 10 10 4
30
6
120 235 185 70 10
620
7
4690 4450 1695 305 20
11160
depth 5
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1
1
6
1 6 15 20 15 5
62
7
363 841 825 435 125 15
2604
depth 6
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1
1
7
1 7 21 35 35 21 6
126
depth 7
g
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Alder
g
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
1 1 1
3
3
4 4 2 1
11
4
20 18 9 3 1
51
5
132 106 48 16 4 1
307
6
1172 818 330 100 25 5 1
2451
7
14084 8362 2928 790 180 36 6 1
26387
fixed gravity (adicity × depth matrices)
The row sums are columns of Alder .
gravity 0
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
1
1
3
3 1
4
4
7 12 1
20
5
15 77 39 1
132
6
31 390 630 120 1
1172
7
63 1767 7200 4690 363 1
14084
gravity 1
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
2
1
1
3
1 3
4
4
1 13 4
18
5
1 39 61 5
106
6
1 101 475 235 6
818
7
1 243 2820 4450 841 7
8362
gravity 2
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
1
1
3
2
2
4
3 6
9
5
4 34 10
48
6
5 125 185 15
330
7
6 381 1695 825 21
2928
gravity 3
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
1
1
4
3
3
5
6 10
16
6
10 70 20
100
7
15 305 435 35
790
gravity 4
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
1
1
5
4
4
6
10 15
25
7
20 125 35
180
gravity 5
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
1
1
6
5
5
7
15 21
36
gravity 6
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
1
1
7
6
6
gravity 7
d
a
0 1 2 3 4 5 6 7 Σ
0
1
2
3
4
5
6
7
1
1
sum: triangle Maple
d
a
0 1 2 3 4 5 6 7 Σ
0
1
1
1
1
1
2
2 1
3
3
4 6 1
11
4
8 28 14 1
51
5
16 120 140 30 1
307
6
32 496 1240 620 62 1
2451
7
64 2016 10416 11160 2604 126 1
26387
other sides
depth − gravity = 0 Pascal's triangle (with trivial column on the left)
adicity − depth = 1 almost Pascal's triangle (without right diagonal, next reduced by 1)