Ref: Lecture Notes p.28-1
Derive equation 1 from Lecture Notes p.27-1
We have
E = ∑ r = 1 l P ( 2 r ) ( + 1 ) [ g ( 2 r − 1 ) − g ( 2 r − 1 ) ( − 1 ) ] − ∫ − 1 + 1 P ( 2 l ) ( t ) g ( 2 l ) ( t ) d t ] {\displaystyle E=\sum _{r=1}^{l}P_{(2r)}(+1)[g^{(2r-1)}-g^{(2r-1)}(-1)]-\int \limits _{-1}^{+1}P_{(2l)}(t)g^{(2l)}(t)dt]}
and g k i ( t ) = ( h 2 ) i f i ( x ( t ) ) {\displaystyle g_{k}^{i}(t)=({\frac {h}{2}})^{i}f^{i}(x(t))}
g ( 2 r − 1 ) ( t ) = ( h 2 ) ( 2 r − 1 ) f ( 2 r − 1 ) ( x ( t ) ) {\displaystyle g^{(2r-1)}(t)=({\frac {h}{2}})^{(2r-1)}f^{(2r-1)}(x(t))}
g ( 2 r − 1 ) ( + 1 ) = ( h 2 ) ( 2 r − 1 ) f ( 2 r − 1 ) ( x ( 1 ) ) {\displaystyle g^{(2r-1)}(+1)=({\frac {h}{2}})^{(2r-1)}f^{(2r-1)}(x(1))}
and x ( 1 ) = b {\displaystyle x(1)=b}
g ( 2 r − 1 ) ( + 1 ) = ( h 2 ) ( 2 r − 1 ) f ( 2 r − 1 ) ( b ) {\displaystyle g^{(2r-1)}(+1)=({\frac {h}{2}})^{(2r-1)}f^{(2r-1)}(b)}
Similarly
g ( 2 r − 1 ) ( − 1 ) = ( h 2 ) ( 2 r − 1 ) f ( 2 r − 1 ) ( a ) {\displaystyle g^{(2r-1)}(-1)=({\frac {h}{2}})^{(2r-1)}f^{(2r-1)}(a)}
and g ( 2 l ) = ( h 2 ) ( 2 l ) f ( 2 l ) ( x ) {\displaystyle g^{(2l)}=({\frac {h}{2}})^{(2l)}f^{(2l)}(x)}
using above equations into first equation we obtain
E = ∑ r = 1 l P ( 2 r ) ( + 1 ) h 2 h 2 ) ( 2 r − 1 ) [ f ( 2 r − 1 ) ( b ) − f ( 2 r − 1 ) ( a ) ] − ∑ k = 1 n − 1 ∫ − 1 + 1 P ( 2 l ) ( t k ) ( h 2 ) 2 l f ( 2 l ) ( x ) d x ] {\displaystyle E=\sum _{r=1}^{l}P_{(2r)}(+1){\frac {h}{2}}{\frac {h}{2}})^{(2r-1)}[f^{(2r-1)}(b)-f^{(2r-1)}(a)]-\sum _{k=1}^{n-1}\int \limits _{-1}^{+1}P_{(2l)}(t_{k})({\frac {h}{2}})^{2l}f^{(2l)}(x)dx]}
= ∑ r = 1 l h 2 r P ( 2 r ) ( + 1 ) 2 2 r [ f ( 2 r − 1 ) ( b ) − f ( 2 r − 1 ) ( a ) ] − ( h 2 ) 2 l ∑ k = 1 n − 1 ∫ x k x k + 1 P ( 2 l ) ( t k ( x ) ) f ( 2 l ) ( x ) d x ] {\displaystyle =\sum _{r=1}^{l}h^{2r}{\frac {P_{(2r)}(+1)}{2^{2r}}}[f^{(2r-1)}(b)-f^{(2r-1)}(a)]-({\frac {h}{2}})^{2l}\sum _{k=1}^{n-1}\int \limits _{x_{k}}^{x_{k+1}}P_{(2l)}(t_{k}(x))f^{(2l)}(x)dx]}
but P ( 2 r ) ( + 1 ) 2 2 r = d ¯ 2 r {\displaystyle {\frac {P_{(2r)}(+1)}{2^{2r}}}={\overline {d}}_{2r}}
So finally we obtain
= ∑ r = 1 l h 2 r d ¯ 2 r [ f ( 2 r − 1 ) ( b ) − f ( 2 r − 1 ) ( a ) ] − ( h 2 ) 2 l ∑ k = 1 n − 1 ∫ x k x k + 1 P ( 2 l ) ( t k ( x ) ) f ( 2 l ) ( x ) d x ] {\displaystyle =\sum _{r=1}^{l}h^{2r}{\overline {d}}_{2r}[f^{(2r-1)}(b)-f^{(2r-1)}(a)]-({\frac {h}{2}})^{2l}\sum _{k=1}^{n-1}\int \limits _{x_{k}}^{x_{k+1}}P_{(2l)}(t_{k}(x))f^{(2l)}(x)dx]}
Ref: Lecture Notes p.29-3
Obtain expressions for ( P 2 , P 3 ) , ( P 4 , P 5 ) , ( P 6 , P 7 ) {\displaystyle (P_{2},P_{3}),(P_{4},P_{5}),(P_{6},P_{7})} using eq (6) Lecture Notes p.29-2
( P 2 , P 3 ) {\displaystyle (P_{2},P_{3})}
P 2 i ( t ) = ∑ j = 0 i C 2 j + 1 t 2 ( i − j ) ( 2 ( i − j ) ) ! {\displaystyle P_{2i}(t)=\sum _{j=0}^{i}C_{2j+1}{\frac {t^{2(i-j)}}{(2(i-j))!}}}
P 2 ( t ) = ∑ j = 0 i C 2 j + 1 t 2 ( 1 − j ) ( 2 ( 1 − j ) ) ! {\displaystyle P_{2}(t)=\sum _{j=0}^{i}C_{2j+1}{\frac {t^{2(1-j)}}{(2(1-j))!}}}
P 2 ( t ) = C 1 t 2 ) 2 ! + C 3 {\displaystyle P_{2}(t)=C_{1}{\frac {t^{2)}}{2!}}+C_{3}}
Using eq (6) from Lecture Notes p.29-3 , we obtain
C 1 3 ! + C 3 = 0 {\displaystyle {\frac {C_{1}}{3!}}+C_{3}=0}
C 3 = − C 1 3 ! {\displaystyle C_{3}=-{\frac {C_{1}}{3!}}}
= − − 1 3 ! = 1 6 {\displaystyle =-{\frac {-1}{3!}}={\frac {1}{6}}}
so P 2 ( t ) = − t 2 2 + 1 6 {\displaystyle P_{2}(t)=-{\frac {t^{2}}{2}}+{\frac {1}{6}}}
P 3 = ∑ j = 0 i C 2 j + 1 t 2 ( i − 1 ) ( 2 ( i − j ) ) ! + C 2 i + 2 {\displaystyle P_{3}=\sum _{j=0}^{i}C_{2j+1}{\frac {t^{2(i-1)}}{(2(i-j))!}}+C_{2i+2}}
where C 2 i + 2 = 0 {\displaystyle C_{2i+2}=0}
P 3 = C 1 t 3 ! + C 3 t 1 ! {\displaystyle P_{3}=C_{1}{\frac {t}{3!}}+C_{3}{\frac {t}{1!}}}
where C 1 = − 1 a n d C 3 = 1 6 {\displaystyle C_{1}=-1andC_{3}={\frac {1}{6}}} from previous result
P 3 = − t 3 ! + t 6 = 0 {\displaystyle P_{3}=-{\frac {t}{3!}}+{\frac {t}{6}}=0}
P 4 , P 5 {\displaystyle P_{4},P_{5}}
P 4 = C 1 t 4 4 ! + C 3 t 2 2 ! + C 5 {\displaystyle P_{4}=C_{1}{\frac {t^{4}}{4!}}+C_{3}{\frac {t^{2}}{2!}}+C_{5}}
C 1 5 ! + C 3 3 ! + C 5 1 ! = 0 {\displaystyle {\frac {C_{1}}{5!}}+{\frac {C_{3}}{3!}}+{\frac {C_{5}}{1!}}=0}
C 5 = 1 5 ! − 1 36 = − 7 360 {\displaystyle C_{5}={\frac {1}{5!}}-{\frac {1}{36}}={\frac {-7}{360}}}
P 4 = − t 4 24 + t 2 12 − 7 360 {\displaystyle P_{4}=-{\frac {t^{4}}{24}}+{\frac {t^{2}}{12}}-{\frac {7}{360}}}
P 5 = C 1 t 3 5 ! + C 3 t 3 3 ! + C 5 t 3 1 ! {\displaystyle P_{5}=C_{1}{\frac {t^{3}}{5!}}+C_{3}{\frac {t^{3}}{3!}}+C_{5}{\frac {t^{3}}{1!}}}
P 5 = ( C 1 5 ! + C 3 3 ! + C 5 1 ! ) t 3 {\displaystyle P_{5}=({\frac {C_{1}}{5!}}+{\frac {C_{3}}{3!}}+{\frac {C_{5}}{1!}})t^{3}}
P 5 = 0 {\displaystyle P_{5}=0}
P 6 , P 7 {\displaystyle P_{6},P_{7}}
P 6 = C 1 t 6 12 ! + C 3 t 4 10 ! + C 5 t 2 8 ! + C 7 1 6 ! {\displaystyle P_{6}=C_{1}{\frac {t^{6}}{12!}}+C_{3}{\frac {t^{4}}{10!}}+C_{5}{\frac {t^{2}}{8!}}+C_{7}{\frac {1}{6!}}}
By using eq 6 from Lecture Notes p.29-3 , we obtain
C 1 7 ! + C 3 5 ! + C 5 3 ! + C 7 = 0 {\displaystyle {\frac {C_{1}}{7!}}+{\frac {C_{3}}{5!}}+{\frac {C_{5}}{3!}}+C_{7}=0}
C 7 = 1 7 ! − 1 6 ! − 7 2160 {\displaystyle C_{7}={\frac {1}{7!}}-{\frac {1}{6!}}-{\frac {7}{2160}}}
= 11 15120 {\displaystyle ={\frac {11}{15120}}}
P 6 = − t 6 12 ! + t 4 6 ∗ 10 ! − 7 t 2 360 ∗ 8 ! + 11 15120 {\displaystyle P_{6}=-{\frac {t^{6}}{12!}}+{\frac {t^{4}}{6*10!}}-{\frac {7t^{2}}{360*8!}}+{\frac {11}{15120}}}
P 7 = C 1 t 5 7 ! + C 3 t 5 5 ! + C 5 t 5 3 ! + C 7 t 5 1 ! {\displaystyle P_{7}=C_{1}{\frac {t^{5}}{7!}}+C_{3}{\frac {t^{5}}{5!}}+C_{5}{\frac {t^{5}}{3!}}+C_{7}{\frac {t^{5}}{1!}}}
P 7 = ( C 1 7 ! + C 3 5 ! + C 5 3 ! + C 7 1 ! ) t 5 {\displaystyle P_{7}=({\frac {C_{1}}{7!}}+{\frac {C_{3}}{5!}}+{\frac {C_{5}}{3!}}+{\frac {C_{7}}{1!}})t^{5}}
P 7 = 0 ∗ t 5 {\displaystyle P_{7}=0*t^{5}}
P 7 = 0 {\displaystyle P_{7}=0}