Sequences related to strong Boolean functions

Studies of Boolean functions
sequences related to Boolean functions
triangles by arity and strength
base
triangle
diagonal families BF
triangle total triangle total
all Oak (Ex)Aloe Olive Thyme ExOlive Grass
balanced (Ex)Agave Laurel Saffron ExLaurel Sesame
dense Birch (Ex)Aloe Lemon Lily ExLemon Lotus
b & d (Ex)Agave Orange Chamomile ExOrange Calendula
signed triangles
base
triangle
families BF
diagonal triangle total diagonal triangle total
strong Turned
Rhodo.
Thyme SignedBerberis Aloe Grass SignedBramble ExAloe
balanced & strong Saffron SignedArdisia Agave Sesame SignedAronia ExAgave
dense Pascal Thyme SignedCypress Lily Grass SignedCedar Lotus
balanced & dense Saffron SignedOlearia Chamomile Sesame SignedOleander Calendula

Sequence Aloe

01234567
Aloe (A051502) 2122339041341562842882303719251493282658455991569831727504985413859223552
ExAloe 22818462464429300108818446743803209556992340282366920938461120638132973980614656
a ↦ strong families Aloe(a) is the number of strong families with arity a.

Aloe ∘ powers of two = ExAloe

Oak(Ex)Aloe = (Ex)Olive

Oak ∘ truncated Aloe = Forsythia

Sequence Agave

01234567
NonAgave 2021631541153844202595956203143583522471337663117268581931607874158730240
Agave 01077501877186428634751610790976187118328452563145573377539700493312
ExAgave 0205612000600699648183262410309062246423951146041928082633392325081663143936
a ↦ strong balanced families Agave(a) is the number of strong balanced families with arity a.

Agave ∘ powers of two = ExAgave

NonAgave = Aloe Agave       That is the number of balanced families, that are not strong.

Oak(Ex)Agave = (Ex)Laurel